Les dispositifs de nanoélectronique avancée et les technologies quantiques reposent sur des oxydes ultraminces et des interfaces spécifiques dont la composition chimique, la stœchiométrie et l’épaisseur doivent être maîtrisées avec une grande précision. Dans ce contexte, le LETI a fait lapos;acquisition du premier équipement de photoémission X (XPS–HAXPES)dédiés à la mesure en ligne de plaquettes 300 mm. Les caractéristiques uniques de cet équipement (analyse multi-énergie et résolu angulairement) ouvrent la voie à une métrologie chimique quasi in situ au plus proche des étapes procédés. Cette thèse vise à développer des méthodologies XPS/HAXPES quantitatives, multi-énergie et en résolues en angle, appliquées à l’étude d’oxydes et d’oxynitrures ultraminces. Les travaux porteront sur la validation de la précision métrologique, la quantification des paramètres structuraux et chimiques, ainsi que sur l’élaboration de protocoles robustes permettant le transfert quasi in situ de couches sensibles entre équipements précédés (dépôt, gravure, …) et de caractérisation. Les méthodologies développées seront appliquées à des cas d’intérêt industriel et scientifique majeur, notamment les empilements CMOS avancés et les jonctions Josephson pour dispositifs quantiques, où des barrières AlOx d’épaisseur inférieure à 2 nm jouent un rôle déterminant dans les performances des composants. Ce projet de doctorat contribue directement au développement des technologies quantiques de nouvelle génération, de la photonique avancée et de la microélectronique à faible consommation énergétique, en améliorant la fiabilité, la stabilité et la maîtrise des matériaux à l’échelle nanométrique. La thèse sera réalisée dans un environnement scientifique de haut niveau, au sein d’un cadre collaboratif multi-partenaires.
Ecole dapos;ingénieur, Master Physique ou Chimie-Physique
Talent impulse, le site d’emploi scientifique et technique de la Direction de la Recherche Technologique du CEA
© Copyright 2023 – CEA – TALENT IMPULSE – Tous droits réservés