Antennes miniatures Super-gain à polarisation circulaire et dépointage électronique de faisceau

Candidater

Le contrôle du rayonnement (forme, polarisation) des antennes est un élément clé pour les systèmes de communications actuels et du futur. Focaliser le rayonnement de l’antenne dans une direction privilégiée permet notamment d’adresser des applications qui nécessitent du filtrage spatial. Dans le contexte particulier de l’internet des objets (IoT) où plusieurs systèmes ou objets communicants peuvent cohabiter, le filtrage spatial amené par les antennes directives permet de favoriser la communication avec des objets sélectionnés sans perturber les systèmes environnants, puisque l’énergie est focalisée uniquement dans la direction de l’objet d’intérêt. Egalement, focaliser l’énergie rayonnée dans un secteur angulaire réduit permet de limiter les pertes d’énergie dans les autres directions et ainsi limiter la consommation et favoriser l’autonomie des batteries des objets communicants. Cependant, les techniques classiques pour améliorer la directivité du rayonnement conduisent généralement à une augmentation significative de la taille de l’antenne. Par conséquence, l’intégration d’antennes directives dans les objets communicants compacts reste limitée. Cette difficulté est particulièrement critique pour les gammes de fréquences inférieures à 3 GHz lorsqu’on vise une intégration dans des objets dont les dimensions sont de l’ordre de quelques centimètres. Des antennes avec une directivité et un gain importants, multi-bandes ou large bande, une taille réduite, à polarisation linéaire ou circulaire et avec la possibilité de dépointage électronique du faisceau sont nécessaires pour le développement de nouvelles applications dans le domaine des objets communicants. Les études récentes réalisées par le CEA ont permis la démonstration des potentialités des réseaux compacts d’antennes à élément parasites super directifs et le développement conjoint d’une expertise spécifique dans ce domaine. Les travaux de thèse se dérouleront au CEA Leti Grenoble au sein du Laboratoire Antennes Propagation et Couplage Inductif (LAPCI). Les principaux objectifs de ce travail de thèse sont : 1. Contribution au développement d’outils numériques pour la conception et l’optimisation de réseaux compacts et super directifs, super gain ou à formation de faisceau ; 2. Le développent de nouvelle sources élémentaires pour les réseaux d’antennes compacts ; 3. La réalisation d’un réseau à polarisation circulaire compact super gain et avec dépointage de faisceau. Les travaux à mener combineront études théoriques, développements de modèle et outils logiciels, conceptions par simulation électromagnétique 3D et expérimentations sur prototypes en laboratoire de métrologie des champs électromagnétiques.

Master 2 en télécommunications, en micro-ondes ou en électronique des hautes fréquences

fr_FRFR

Contact us

We will reply as soon as possible...