Les matériaux ferroélectriques à température ambiante sont l’élément clé des mémoires non-volatiles haute densité et basse consommation. Cependant, avec la miniaturisation accrue des dispositifs électroniques, les ferroélectriques conventionnels sont limités à une épaisseur critique en dessous de laquelle la ferroélectricité est instable. Les matériaux bidimensionnels (2D) grâce à leur chimie de surface saturée et leurs faibles interactions inter-couches présentent l’avantage d’être stables à la limite de la monocouche atomique et sont donc prometteurs pour explorer la ferroélectricité dans des épaisseurs nanométriques et sub-nanométriques. Jusqu’à présent, les preuves de concept démontrant la ferroélectricité 2D ont principalement utilisé des cristaux de quelques µm2 exfoliés mécaniquement à partir d’un cristal massif. En particulier, les phases ? et ? du semiconducteur lamellaire In2Se3 préservent un caractère ferroélectrique à la limite de la monocouche atomique. Compte tenu de l’impératif des applications « wafer-scale » de la microélectronique, il y a aujourd’hui un besoin urgent de croissance de matériaux 2D de haute qualité cristalline sur des substrats de grande dimension. L’objectif de la thèse est de développer la croissance du matériau lamellaire In2Se3 dans ses phases non centro-symmétriques ? ou ? par épitaxie en phase vapeur par procédé chimique (MOCVD) sur des substrats de silicium de grande dimension (200 mm). A notre connaissance, seulement trois articles de la littérature démontrent la croissance MOCVD du composé In2Se3. Un seul met en évidence l’obtention de la phase ? (article de 2024). Le défi est donc difficile mais possible. La preuve de concept d’une cellule mémoire ferroélectrique sera réalisée si possible in fine en déposant directement une électrode métallique en surface du matériau ferroélectrique 2D sans endommager ce-dernier
Master 2 in condensed matter physics, or nanophysics with significant experimentation and lab work as well as lots of teamwork.
Talent impulse, le site d’emploi scientifique et technique de la Direction de la Recherche Technologique du CEA
© Copyright 2023 – CEA – TALENT IMPULSE – Tous droits réservés