La cybersécurité de nos infrastructures est un maillon essentiel à la transition numérique qui s’opère et la sécurité doit être assurée sur l’ensemble de la chaîne. Les couches basses, matérielles, s’appuient sur du composants microélectroniques assurant les fonctions essentielles pour l’intégrité, la confidentialité et la disponibilité des informations traitées. Le matériel assurant des fonctions de sécurité peut être soumis à des attaques physiques, utilisant les propriétés du matériel. Certaines de ces attaques sont plus directement liées que d’autres aux caractéristiques physiques des technologies silicium utilisées pour la fabrication des composants. Parmi celles-ci, les attaques utilisant un laser impulsionnel dans l’infra rouge proche est la plus puissante par sa précision et sa répétabilité. Il convient donc de protéger les composants vis-à-vis de cette menace. En sécurité, le développement des protections (on parle aussi de contremesures) est possible quand la menace est modélisée. Si l’effet d’un tir laser dans les technologies bulk traditionnelles est bien modélisé, il ne l’est pas encore suffisamment dans les technologies FD-SOI (une seule publication). Nous savons aujourd’hui que le FD-SOI a une sensibilité moindre à un tir laser, et cela doit s’expliquer par un modèle physique sensiblement différent de celui effectif sur bulk. Or les systèmes embarqués susceptibles d’être visés par des attaques malveillantes (contexte IoT, Bancaire, Idendité etc…) sont aujourd’hui portés sur les technologies FD-SOI. Il devient donc essentiel de consolider la modélisation physique de l’effet d’un tir laser sur un transistor et sur des cellules standard (standard cells : inverseur, NAND, NOR, Flip-Flop, SRAM…). Nous proposons d’allier l’expérimental à une approche TCAD permettant une compréhension fine des effets mis en jeu lors d’un tir laser impulsionnel dans le FD-SOI. Un modèle compact d’un transistor FD-SOI sous impulsion laser sera déduit de cette phase de modélisation physique. Ce modèle compact sera ensuite injecté dans un design de cellules standards. Cette approche a deux objectifs : porter la modélisation de l’effet d’un tir laser au niveau de design de cellules standards (absolument centrales dans les circuits numériques pour la sécurité). Des données expérimentales (existantes et générées par le doctorant) permettront de valider le modèle à ce niveau d’abstraction. Enfin, et surtout, cette modélisation fine permettra de proposer des designs de cellules standards en technologie FD-SOI 10nm, intrinsèquement sécurisées vis-à-vis d’un tir laser impulsionnel. Cela sera rendu possible par l’exploitation des propriétés de sécurité des technologies FD-SOI. Contacts: romain.wacquez@cea.fr, jean-frederic.christmann@cea.fr, sebastien.martinie@cea.fr,
Talent impulse, le site d’emploi scientifique et technique de la Direction de la Recherche Technologique du CEA
© Copyright 2023 – CEA – TALENT IMPULSE – Tous droits réservés