Réseaux de Neurones Artificiels Graphes pour capteur Radar Intelligent H/F

La perception et l’analyse de l’environnement qui nous entoure est un enjeu majeur dans beaucoup de domaines industriels porteurs. Dans ce contexte, les algorithmes d’intelligence artificielle (IA) ont incontestablement montré leur efficacité pour des tâches liées à la vision, avec différents capteurs (caméra, lidar…). Aujourd’hui, il y a un intérêt croissant pour l’exploitation de données de capteurs radar (radio detection and ranging) par de l’IA. Le radar est en effet un capteur qui se démarque par la nature de ses données, son opérabilité (faible luminosité, mauvaise météo…) et son coût. Cependant, ils produisent des données éparses avec une faible résolution spatiale, ce qui les rend difficiles à exploiter par les algorithmes traditionnels. Récemment, les réseaux de neurones artificiels basés sur une représentation des données sous forme de graphe (Graph Neural Networks - GNN) ont montré une bonne précision sur des données de capteurs éparses et bruitées [1]. En conséquence, l’utilisation de GNN pour exploiter les données radar semble très prometteuse [2]. Le spectre d’application est large avec le véhicule intelligent (surveillance de l’habitacle), le dispositif médical (mesures de signes vitaux) ou encore le dispositif de surveillance (détection de chutes). [1] Dalgaty et al, « HUGNet: Hemi-Spherical Update Graph Neural Network applied to low-latency event-based optical flow » Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023, pp. 3952-3961 [2] Fent, et al., "RadarGNN: Transformation Invariant Graph Neural Network for Radar-based Perception," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2023, pp. 182-191.

Le stage se déroulera au sein du LIST, dans le Laboratoire d'Intelligence Intégrée Multi-capteurs (localisé à Grenoble), qui regroupe des experts en intelligence artificielle, systèmes embarqués et capteurs.

Profil recherché : Etudiant(e) en dernière année d’Ecole d’Ingénieur ou Master 2 Compétences souhaitées : Une forte motivation pour apprendre et contribuer à la recherche en intelligence artificielle. Une connaissance approfondie en informatique et langages de programmation (Python). Des connaissances en intelligence artificielle et une expérience dans les réseaux de neurones artificiels (librairies Pytorch ou Tensorflow) sont un plus. L’entretien de recrutement pourra faire référence aux deux publications citées. Conformément aux engagements pris par le CEA en faveur de l’intégration de personnes en situation de handicap, cet emploi est ouvert à tous et toutes.

Bac+5 - Master 2

fr_FRFR

Contact us

We will reply as soon as possible...