Acoustics and Electromagnetism (AEM): New approaches for the secure characterization of components such as the SoCs

  • Cyber security : hardware and sofware,
  • phD
  • Grenoble
  • Level 7
  • 2024-10-01
  • ABOULKASSIMI Driss (DRT/DSYS/SSSEC/LTSO)
Apply

Work carried out within CEA-Leti has shown that physical attacks can be a threat to the security mechanisms of SoCs (System on Chips). Indeed, fault injections by electromagnetic disturbance have already led to an escalation of privileges by authenticating with an illegitimate password, or more recently have made it possible to bypass one of the highest levels of security of a SoC, which is the Secure Boot. However, the technologies integrated into this type of targets are increasingly sophisticated with Package-on-Package (PoP) electronic devices and technological nodes less than or equal to 7 nm, such as the new Samsung S20. Implementing these attacks requires cutting-edge equipment not currently commercially available (very small diameter probe, high transient current pulse generator, magnetometer and current broadband sensors with high spatial resolution, etc.). The thesis defended in 2022 by Clément Gaine [1] within our team made it possible to study several components of the EM injection chain, in particular a main element such as the electromagnetic injection probe. Other fields are to be explored, in particular the complete injection chain from the pulse generator to the creation of an electromotive force in the target, induced by the EM probe via very high current gradients (di/dt). Mastering the complete chain makes it possible to design the most suitable injection system to characterize a smartphone type target and resolve the obstacles linked to this type of target such as: the complex microarchitecture, the multilayer software stack, the complex packaging with in particular the stacking of several components on the same chip (PoP). The main objective of this thesis is to study a new EM injection approach and its potential to circumvent certain security mechanisms of a smartphone. This will allow hardware security characterization tools to evolve in order to meet the growing needs for the security characterization of SoCs. In terms of exploitation, the FORENSIC domain is aimed at circumventing and/or supplementing the limits of legal data mining techniques based on “0-day” vulnerabilities by exploiting flaws in hardware implementations that cannot be corrected on the same target model. To achieve this objective, the PhD student will first be required to characterize, test and validate the new ultra-fast switching attack approach and the magnetometric and amperometric measurement means recently developed in the laboratory. At the same time, the doctoral student will carry out bibliographical and experimental work on the physiological risk potentially linked to exposure to short-term EM pulses. The results will be used to define new protocols allowing operators to carry out their EM injection experiments in a secure environment and to develop standards in this area if necessary. Secondly, the doctoral student will devote part of his work to modeling the transient magnetic flux and the transfer of induced power in high or low impedance targets, with a focus on the impact of the orientation of the field as well as the polarity of the pulse on the fault or glitch model on different types of transistors (NMOS, PMOS, JFET). [1] https://cea.hal.science/search/index/?q=*amp;authFullName_s=ClmentGaine More here : https://vimeo.com/441318313 (project video)

Cursus Mathématique, Informatique ou Électronique. Une expérience en lien avec les attaques physiques napos;est pas obligatoire, mais appréciable.

en_USEN

Contact us

We will reply as soon as possible...