Simulation of ultrasonic waves interaction phenomena with metal microstructure for imaging and characterisation purposes

Apply

The interaction of waves with matter is highly dependent on the frequency of these waves and the scale of their wavelengths in relation to the properties of the medium under consideration. In the context of ultrasound imaging applications, particularly concerning metals, the scales considered are generally on the order of a millimeter (ranging from a tenth to several tens of millimeters). However, depending on the manufacturing processes used, metallic materials, often anisotropic, can also have a microstructure with heterogeneities of similar dimensions. Consequently, ultrasonic waves propagating through metals may, under certain circumstances, be significantly influenced by their microstructures. This can either pose limitations to certain ultrasonic techniques (e.g., attenuation, structural noise) or provide an opportunity to estimate local properties of the inspected metal. The general objective of the proposed thesis is to gain a deeper understanding of the link between microstructure and ultrasonic wave behaviour for large classes of material by benefiting from the combined knowledge of LEM3 for the generation of virtual microstructure and of the CEA for the simulation of ultrasonic wave propagation. This work will combine the acquisition and analysis of experimental data (material and ultrasound), the use of simulation tools, and the statistical processing of data. This will enable an analysis of behaviors based on material classes, and possibly the implementation of inversion procedures to characterize a microstructure from a set of ultrasonic data. The combination of these methods will enable a holistic approach, contributing to significant advances in this field.

en_USEN

Contact us

We will reply as soon as possible...