Jobs

All our offers

+Filter by technology challenge

  • Cyber security : hardware and sofware
  • Energy efficiency for smart buildings, electrical mobility and industrial processes
  • Solar energy for energy transition
  • Green & decarbonated energy including bioprocesses and waste recycling
  • Additive manufacturing, new routes for saving materials
  • Support functions
  • Advanced hydrogen and fuel-cells solutions for energy transition
  • Instrumentation nucléaire et métrologie des rayonnements ionisants
  • Artificial Intelligence & data intelligence
  • New computing paradigms, including quantum
  • Emerging materials and processes for nanotechnologies and microelectronics
  • Advanced nano characterization
  • Photonics, Imaging and displays
  • Communication networks, IOT, radiofrequencies and antennas
  • Smart Energy grids
  • Numerical simulation & modelling
  • Stockage d'énergie électrochimique y compris les batteries pour la transition énergétique
  • Cyber physical systems - sensors and actuators
  • Health and environment technologies, medical devices
  • Factory of the future incl. robotics and non destructive testing

+Filter by contract type

  • Work-study contract
  • Fixed term contract
  • Permanent contract
  • phD
  • PostDoc
  • Internship

+Filter by institute

  • CEA-Leti
  • CEA-List
  • CEA en Région

+Filter by location

  • Cadarache – Aix-en-Provence
  • Grenoble
  • Paris – Saclay

+Filter by Level of study

  • Level 4
  • Level 5 / Level 6
  • Level 7
  • Level 8
  • CAP/BEP
Number of results : 9
  • PostDoc Design of in-memory high-dimensional-computing system

    Conventional von Neumann architecture faces many challenges in dealing with data-intensive artificial intelligence tasks efficiently due to huge amounts of data movement between physically separated data computing and storage units. Novel computing-in-memory (CIM) architecture implements data processing and storage in the same place, and thus can be much more energy-efficient than state-of-the-art von Neumann architecture....

    Learn more Apply

  • PostDoc Development of innovative metal contacts for 2D-material field-effect-transistors

    Further scaling of Si-based devices below 10nm gate length is becoming challenging due to the control of thin channel thickness. For gate length smaller than 10nm, sub-5nm thick Si channel is required. However, the process-induced Si consumption and the reduction of carrier mobility in ultrathin Si layer can limit the channel thickness scaling. Today, the...

    Learn more Apply

  • PostDoc Optimization of Li metal/electrolyte for the next generation of all-solid-state battery

    CEA Tech Nouvelle-Aquitaine, created in 2013, set up a new laboratory, since more than two years, focused on both the development of materials and the high throughput screening to accelerate the discovery of materials for the next generations of Li-ion batteries. For that, the CEA Tech Nouvelle-Aquitaine acquires different vacuum deposition equipment (sputtering, evaporation, atomic...

    Learn more Apply

  • PostDoc Quantum dot auto-tuning assisted by physics-informed neural networks

    Quantum computers hold great promise for advancing science, technology, and society by solving problems beyond classical computersapos; capabilities. One of the most promising quantum bit (qubit) technologies are spin qubits, based on quantum dots (QDs) that leverage the great maturity and scalability of semiconductor technologies. However, scaling up the number of spin qubits requires overcoming...

    Learn more Apply

  • PostDoc Advanced reconstruction methods for cryo-electron tomography of biological samples

    Cryo-electron tomography (CET) is a powerful technique for the 3D structural analysis of biological samples in their near-native state. CET has seen remarkable advances in instrumentation in the last decade but the classical weighted back-projection (WBP) remains by far the standard CET reconstruction method. Due to radiation damage and the limited tilt range within the...

    Learn more Apply

  • PostDoc Disruptive RF substrates based on polycrystalline materials

    A high resistivity substrate is essential for the design of state-of-the-art high-frequency circuits. The high-resistivity (HR) SOI substrate with a trap-rich layer below the buried oxide (BOX) is the option with the highest performance at present for CMOS technologies. However, these substrates have two major limitations: (1) their relatively high price and (2) the degradation...

    Learn more Apply

  • PostDoc Comparison of Diamond and vertical GaN technologies to SiC and Si for power applications

    Power devices based on wide band gap semiconductors are increasingly being studied and adopted in commercial products, driven by the electrification of our societies. Among these wide band gap devices, SiC-based technologies are the most mature, at the industrial production stage. Other materials are being studied to achieve higher performance, in particular diamond, whose intrinsic...

    Learn more Apply

  • PostDoc 2D materials electrical characterization for microelectronics

    Future microelectronic components will be ever smaller and ever more energy-efficient. To meet this challenge, 2D materials are excellent candidates, thanks to their remarkable dimensions and electronic properties (high mobility of charge carriers, high light emission/absorption). What's more, they feature van der Waals (vdW) surfaces, i.e. no dangling bonds, enabling them to retain their properties...

    Learn more Apply

  • PostDoc DTCO for RF amp; mmW Applications:Focus on Homogeneous amp; Heterogeneous Chiplet Hybrid Bonding Challenge

    In recent years, there have been numerous technological advancements in silicon-based semiconductors. However, the limits in terms of frequency performance and power seem to have been reached, requiring the development of new type III-V devices (such as InP and GaN) that are faster, more powerful and well adapted for new RF mmW applications. For reasons...

    Learn more Apply

en_USEN

Contact us

We will reply as soon as possible...