post-docs
All our offers
-
Emerging materials and processes for nanotechnologies and microelectronics
Developement of relaxed pseudo-substrate based on InGaN porosified by electrochemical anodisation
As part of the Carnot PIRLE project starting in early 2021, we are looking for a candidate for a post-doctoral position of 24 months (12 months renewable) with a specialty in material science. The project consists in developing a relaxed pseudo-substrate based on III-N materials for µLEDs applications, especially for emission in red wavelength. The...
-
Emerging materials and processes for nanotechnologies and microelectronics
Design of 2D Matrix For Silicum Quantum computing with Validation by Simulation
The objective is to design a 2D matrix structure for quantum computing on silicon in order to consider structures of several hundred physical Qubits. In particular the subject will be focused on: - The functionality of the structure (Coulomb interaction, RF and quantum) - Manufacturing constraints (simulation and realistic process constraint) - The variability of...
-
Emerging materials and processes for nanotechnologies and microelectronics
Development of large area substrates for power electronics
Improving the performance of power electronics components is a major challenge for reducing our energy consumption. Diamond appears as the ultimate candidate for power electronics. However, the small dimensions and the price of the substrates are obstacles to the use of this material. The main objective of the work is to overcome these two difficulties...
-
Emerging materials and processes for nanotechnologies and microelectronics
Design of in-memory high-dimensional-computing system
Conventional von Neumann architecture faces many challenges in dealing with data-intensive artificial intelligence tasks efficiently due to huge amounts of data movement between physically separated data computing and storage units. Novel computing-in-memory (CIM) architecture implements data processing and storage in the same place, and thus can be much more energy-efficient than state-of-the-art von Neumann architecture....
-
Emerging materials and processes for nanotechnologies and microelectronics
Development of innovative metal contacts for 2D-material field-effect-transistors
Further scaling of Si-based devices below 10nm gate length is becoming challenging due to the control of thin channel thickness. For gate length smaller than 10nm, sub-5nm thick Si channel is required. However, the process-induced Si consumption and the reduction of carrier mobility in ultrathin Si layer can limit the channel thickness scaling. Today, the...
-
Emerging materials and processes for nanotechnologies and microelectronics
Disruptive RF substrates based on polycrystalline materials
A high resistivity substrate is essential for the design of state-of-the-art high-frequency circuits. The high-resistivity (HR) SOI substrate with a trap-rich layer below the buried oxide (BOX) is the option with the highest performance at present for CMOS technologies. However, these substrates have two major limitations: (1) their relatively high price and (2) the degradation...
-
Emerging materials and processes for nanotechnologies and microelectronics
Comparison of Diamond and vertical GaN technologies to SiC and Si for power applications
Power devices based on wide band gap semiconductors are increasingly being studied and adopted in commercial products, driven by the electrification of our societies. Among these wide band gap devices, SiC-based technologies are the most mature, at the industrial production stage. Other materials are being studied to achieve higher performance, in particular diamond, whose intrinsic...
-
Emerging materials and processes for nanotechnologies and microelectronics
2D materials electrical characterization for microelectronics
Future microelectronic components will be ever smaller and ever more energy-efficient. To meet this challenge, 2D materials are excellent candidates, thanks to their remarkable dimensions and electronic properties (high mobility of charge carriers, high light emission/absorption). What's more, they feature van der Waals (vdW) surfaces, i.e. no dangling bonds, enabling them to retain their properties...