As part of a call for projects on quot;innovative nuclear reactorsquot;, the TARANIS project involves studying the possibility of energy production by a power laser-initiated inertial confinement fusion power plant. The current context, which encourages the development of low-carbon energies, and the fusion experiments carried out by the NIFapos;s American teams, make it very attractive to conduct high-level research aimed at eventually producing an economically attractive energy source based on inertial fusion. Among the many technical hurdles to be overcome, the production of fusion targets with a suitable reaction scheme compatible with energy production is a major challenge. The CEA has the know-how to produce batches of capsules containing the fusible elements of the reaction. However, the current process is not suitable for mass production of hundreds of thousands of capsules per day at an acceptable cost. One high-potential avenue lies in the use of microfluidic devices, for which the Microfluidic Systems and Bioengineering Laboratory (LSMB) of the Health Technologies and Innovation Department (DTIS) of CEAapos;s DRT has recognized expertise.