Silicon technologies occupy a central position in today’s digital landscape, both for the fabrication of semiconductor devices and for the development of advanced sensors. In 2006, the discovery of superconductivity in silicon heavily doped with boron opened a new field of research. Since then, several laboratories, including CEA, have been investigating its electronic properties and potential applications. This emerging material exhibits particularly attractive characteristics for systems operating at sub-Kelvin cryogenic temperatures, especially in the fields of quantum electronics and ultra-sensitive detectors used in fundamental physics and astrophysics. Despite these advances, the understanding of superconducting silicon remains incomplete, particularly regarding its thermal, mechanical, and optical properties at the micrometric scale. The proposed PhD aims to address these gaps by combining modelling, design, technological fabrication, and cryogenic characterization of prototype devices, within a close collaboration between CEA-Léti and CEA-Irfu. The main objective will be to develop a new generation of detectors based on this superconducting material and to demonstrate their relevance for the detection of electromagnetic radiation in the terahertz and far-infrared ranges.
ingénieur ou mastère 2 en Micro- et nanotechnologies, physique des semi-conducteurs, Photonique, Physique Appliquée
Talent impulse, the scientific and technical job board of CEA's Technology Research Division
© Copyright 2023 – CEA – TALENT IMPULSE - All rights reserved