High efficiency silicon cell irradiations for space

  • Solar energy for energy transition,
  • Département des Technologies Solaires (LITEN)
  • Laboratoire des applications modules
  • 01-11-2022
  • Grenoble
  • PsD-DRT-22-0185
  • CARIOU Romain (

Historically, photovoltaics was developed in conjunction with the growth of space exploration. During the 90's, III-V multi-junction solar cells were progressively replaced silicon, for their superior performance & radiation hardness. Today, the context is favorable to a revival of space Si: increasing PV power needs, missions with moderate durations & constraints (LEO), very low cost & high performance terrestrial Si cells (p-type > 26% AM1.5g). However, for Si cells, conventional irradiation ageing methods & sequences (ECSS) are less appropriate. As the literature mainly comes from 80s - 90s, it is necessary to revisit the topic for the latest generation of passivated contacts Si cells (developed at CEA INES) and the unique double beam irradiation facilities of JANNuS platform - CEA Saclay. This work is part of the SiNRJs project, at the interface between two CEA departments, dealing with space photovoltaics & materials irradiation. The scientific & technological approach adopted: 1. fabrication of passivated contact Si cells (HeT and/or Poly-Si) 2. Si cells optoelectronic characterizations before irradiation (IV AM1.5/AM0, EQE, etc.) 3. Cells & samples proton irradiations, in situ characterizations (Raman & El) 4. Ex situ characterizations after irradiations (IV AM1.5/AM0, EQE, etc) 5. Results analysis and synthesis. From a scientific point of view, the key issues to be addressed concern the understanding of the mechanisms/dynamics of defect creation/healing under this double electronic and ballistic excitation.

Related media


Contact us

We will reply as soon as possible...