The proton exchange membrane fuel cell (PEMFC) is now considered as a relevant solution for carbon-free electrical energy production, for both transport and stationary applications. The management of the fluids inside these cells has a significant impact on their performance and their durability. Flooding phenomena due to the accumulation of liquid water are known to impact the operation of the cells, causing performance drops and also damages that can be irreversible. With the use of thinner channels in ever more compact stacks, these phenomena are becoming more and more frequent. The objective of this post-doc is to progress in the understanding of flooding in PEMFCs. The work will consist in analyzing the link between the operating conditions, the design of the channels and the materials used in the cell. It will be based on a two-phase flow modeling approach at different scales, from the local scale at the channel-rib level, up to, via an upscaling approach, the level of the complete cell. The study will also be based on numerous experimental results obtained at the CEA or in the literature.