Jobs
All our offers
-
phD
3D ultrasound imaging using orthogonal row and column addressing of the matrix array for ultrasonic NDT
This thesis is part of the activities of the Digital Instrumentation Department (DIN) in Non-Destructive Testing (NDT), and aims to design a new, fast and advanced 3D ultrasound imaging method using matrix arrays. The aim will be to produce three-dimensional ultrasound images of the internal volume of a structure that may contain defects (e.g. cracks),...
-
phD
CORTEX: Container Orchestration for Real-Time, Embedded/edge, miXed-critical applications
This PhD proposal will develop a container orchestration scheme for real-time applications, deployed on a continuum of heterogeneous computing resources in the embedded-edge-cloud space, with a specific focus on applications that require real-time guarantees. Applications, from autonomous vehicles, environment monitoring, or industrial automation, applications traditionally require high predictability with real-time guarantees, but they increasingly ask...
-
phD
AI Enhanced MBSE framework for joint safety and security analysis of critical systems
Critical systems must simultaneously meet the requirements of both Safety (preventing unintentional failures that could lead to damage) and Security (protecting against malicious attacks). Traditionally, these two areas are treated separately, whereas they are interdependent: An attack (Security) can trigger a failure (Safety), and a functional flaw can be exploited as an attack vector. MBSE...
-
phD
Robust and Secure Federated Learning
Federated Learning (FL) allows multiple clients to collaboratively train a global model without sharing their raw data. While this decentralized setup is appealing for privacy-sensitive domains like healthcare and finance, it is not inherently secure: model updates can leak private information, and malicious clients can corrupt training. To tackle these challenges, two main strategies are...
-
phD
Towards Reliable and Autonomous Workflow Coordination in Agentic AI-Based Systems
The rise of Large Language Models (LLMs) and agentic AI systems is transforming how complex workflows are designed and managed. Unlike traditional centralized orchestration, modern workflows must support distributed, autonomous agents operating across cloud, edge, and on-premise environments. These agents collaborate with humans and other systems, adapt to evolving goals, and cross organizational and trust...
-
phD
Bridging the embedding gap between expressive specification and efficient verification of machine learning
Formal verification of neural networks is facing a double-faceted issue. The expressiveness of specifications (as in: compact and close to human understanding) is apparently clashing with their efficient translation to state-of-the-art prover, who only support a fragment of arithmetic without quantifiers. This thesis will investigate quot;globalquot; properties. Such class of properties describe generic behaviours of...
-
phD
Anisotropic approaches in graph signal processing. Application to graph neural networks.
Signal processing on graphs is based on the properties of an elementary operator generally associated with a notion of random walk / diffusion process. One limitation of these approaches is that the operator is systematically isotropic, a property that is passed on to any notion of filtering based on it. In multi-dimensional signal processing (images,...