Jobs

All our offers

+Filter by technology challenge

  • Cyber security : hardware and sofware
  • Energy efficiency for smart buildings, electrical mobility and industrial processes
  • Solar energy for energy transition
  • Green & decarbonated energy including bioprocesses and waste recycling
  • Additive manufacturing, new routes for saving materials
  • Support functions
  • Advanced hydrogen and fuel-cells solutions for energy transition
  • Instrumentation nucléaire et métrologie des rayonnements ionisants
  • Artificial Intelligence & data intelligence
  • New computing paradigms, including quantum
  • Emerging materials and processes for nanotechnologies and microelectronics
  • Advanced nano characterization
  • Photonics, Imaging and displays
  • Communication networks, IOT, radiofrequencies and antennas
  • Smart Energy grids
  • Numerical simulation & modelling
  • Stockage d'énergie électrochimique y compris les batteries pour la transition énergétique
  • Cyber physical systems - sensors and actuators
  • Health and environment technologies, medical devices
  • Factory of the future incl. robotics and non destructive testing

+Filter by contract type

  • Fixed term contract
  • Permanent contract
  • phD
  • PostDoc
  • Internship

+Filter by institute

  • CEA-Leti
  • CEA-List
  • CEA en Région

+Filter by location

  • Bordeaux – Pessac
  • Cadarache – Aix-en-Provence
  • Grenoble
  • Lille
  • Paris – Saclay
  • Quimper

+Filter by Level of study

  • Level 4
  • Level 5 / Level 6
  • Level 7
  • Level 8
Number of results : 3
  • phD Development of 4D-STEM with variable tilts

    The development of 4D-STEM (Scanning Transmission Electron Microscopy) has profoundly transformed transmission electron microscopy (TEM) by enabling the simultaneous recording of spatial (2D) and diffraction (2D) information at each probe position. These so-called “4D” datasets make it possible to extract a wide variety of virtual contrasts (bright-field imaging, annular dark-field imaging, ptychography, strain and orientation...

    Learn more Apply

  • phD Artificial Intelligence for the Modeling and Topographic Analysis of Electronic Chips

    The inspection of wafer surfaces is critical in microelectronics to detect defects affecting chip quality. Traditional methods, based on physical models, are limited in accuracy and computational efficiency. This thesis proposes using artificial intelligence (AI) to characterize and model wafer topography, leveraging optical interferometry techniques and advanced AI models. The goal is to develop AI...

    Learn more Apply

  • phD Advanced characterization of defects generated by technological processes for high-performance infrared imaging

    This thesis falls within the field of cooled infrared detectors. The CEA-LETI-MINATEC Infrared Laboratory specializes in the design and manufacture of infrared camera prototypes used in defense, astronomy, environmental monitoring, and satellite meteorology. In this context of high-performance imaging, it is crucial to ensure optimal detector quality. However, manufacturing processes can introduce defects that can...

    Learn more Apply

en_USEN

Contact us

We will reply as soon as possible...