The semiconductor industry, and more specifically the radio-frequency (RF) circuit sector, is facing critical challenges related to eco-design and eco-innovation. These challenges include the need to extend the lifetime of circuits while meeting the growing demands of emerging markets such as 5G and the future 6G. Among these circuits, power amplifiers (PA) play a central role, being both critical components in terms of energy efficiency and key targets for improving robustness against aging and enabling potential reuse. In this context, in-situ aging monitoring of PAs appears to be a promising approach for developing innovative and sustainable solutions. This research topic is therefore fully aligned with eco-design strategies, leveraging advanced technological platforms such as current and future CMOS SOI technologies, while integrating industrial constraints through existing strategic collaborations with major partners of CEA Leti. This thesis aims to design an innovative in-situ monitoring solution to evaluate and compensate for the aging of power amplifiers, thereby extending their lifetime through reuse and self-correction strategies. To achieve this, it will rely on methodologies and circuits specifically adapted to practical use cases. The ambition is thus to develop a new generation of robust and durable circuits, integrating intelligent aging management mechanisms. By adopting an eco-design approach, this work aims to address environmental challenges while enhancing the industrial competitiveness of CMOS SOI technologies.
master 2 conception circuit RF
Talent impulse, the scientific and technical job board of CEA's Technology Research Division
© Copyright 2023 – CEA – TALENT IMPULSE - All rights reserved