The laboratory, reknown for its expertise in high-resolution and high-precision magnetic measurements, has been developing and providing for several decades successive generations of optically pumped helium-4 magnetometers. These instruments serve as reference sensors aboard the ESA Swarm mission satellites launched in late 2013, and will also equip the forthcoming NanoMagSat mission, scheduled to launch from the end of 2027 onward. In an effort to diversify its activities and to address emerging applications involving autonomous or “deploy-and-forget” sensors, where power consumption constraints are particularly demanding, the laboratory now aims to develop a new magnetometer technology based on helium-3 atoms as the sensitive medium. The lifetime of the helium-3 atomic state used for magnetic field measurement is significantly longer than that of the equivalent helium-4 state. This property enables a substantial reduction in optical pumping requirements, thereby offering the prospect of improved energy efficiency and power consumption. The objective of this research is to advance the Technology Readiness Level (TRL) of this helium-3-based magnetometer architecture, with the ultimate goal of realizing an instrument that combines outstanding metrological performance with exceptional energy frugality, suited to these highly specific and constrained applications. Accordingly, the purpose of this PhD work will be to design, implement, and experimentally evaluate a helium-3 magnetometer architecture capable of fulfilling these performance and efficiency objectives.
Ingénieur physicien en optique / spectroscopie (background en physique quantique)
Talent impulse, the scientific and technical job board of CEA's Technology Research Division
© Copyright 2023 – CEA – TALENT IMPULSE - All rights reserved