The development of 4D-STEM (Scanning Transmission Electron Microscopy) has profoundly transformed transmission electron microscopy (TEM) by enabling the simultaneous recording of spatial (2D) and diffraction (2D) information at each probe position. These so-called “4D” datasets make it possible to extract a wide variety of virtual contrasts (bright-field imaging, annular dark-field imaging, ptychography, strain and orientation mapping) with nanometer-scale spatial resolution. In this context, 4D-STEM with variable beam tilts (4D-STEMiv) is an emerging approach that involves sequentially acquiring electron diffraction patterns for different incident beam tilts. Conceptually similar to precession electron diffraction (PED), this method offers greater flexibility and opens new possibilities: improved signal-to-noise ratio, faster two-dimensional imaging at higher spatial resolution, access to three-dimensional information (orientation, strain, phase), and optimized coupling with spectroscopic analyses (EELS, EDX). The development of 4D-STEMiv thus represents a major methodological challenge for the structural and chemical characterization of advanced materials, particularly in the fields of nanostructures, two-dimensional materials, and ferroelectric systems.
Physique du solide
Talent impulse, the scientific and technical job board of CEA's Technology Research Division
© Copyright 2023 – CEA – TALENT IMPULSE - All rights reserved