In the race towards building a quantum computer, there is a deep interest in fabricating devices based on the robust and scalable silicon FD-SOI technology. One example is the Josephson Field Effect Transistor (JoFET) whose operability relies on the high transparency of the interface between the superconducting source/drain regions and the semiconducting channel. Such transparency could be improved by doping the source/drain regions, and hence lowering the Schottky barrier height at the superconductor/semiconductor interfaces. This PhD aims at developing highly transparent superconducting silicide contacts on a 300 mm production line using Nanosecond Pulsed Laser Annealing (NPLA). NPLA will play a key role for reaching extremely high doping concentrations in silicon [1,2], then forming the superconducting silicides (CoSi2, V3Si) with minimal thermal budget and related dopant deactivation. A particular focus will be devoted on the stresses during silicide formation and their impact on the superconducting critical temperature. Also, the distribution of dopants will be assessed by Atom Probe Tomography (APT), an advanced 3D imaging technique capable of imaging the distribution of dopants at the atomic scale [3]. Finally, electrical measurements on fabricated junctions and transistors will be carried out at low temperature (lt; 1 K) in order to evaluate the transparency of the superconducting contacts.
M2 physique des matériaux et/ou en nanoscience
Talent impulse, the scientific and technical job board of CEA's Technology Research Division
© Copyright 2023 – CEA – TALENT IMPULSE - All rights reserved