This doctoral project focuses on the design of innovative antennas suited for Internet of Things (IoT) applications, addressing major challenges related to size, performance, and integration. The scientific context is based on the growing demand for electrically small and efficient antennas, capable of seamlessly integrating with IoT devices while maintaining high radiation efficiency. The proposed work involves the creation of electrically small antennas, optimized for performance, tunability, and compatibility with electronic and metallic environments. The designs will explore various types of antennas, such as loops, F-type antennas, top-loaded monopoles, and metallic cage structures, incorporating state-of-the-art tunable components. The main objectives include benchmarking the performance of these antennas against theoretical physical limits (e.g., Chu/Gustafsson), analyzing dielectric and metallic losses, and achieving dual-band reconfigurability tailored to communication standards. The candidate will use electromagnetic simulation tools, develop behavioral models, and create prototypes, as well as conduct performance tests in anechoic chambers. The expected outcomes are highly efficient, frequency-agile miniature antennas that will advance the understanding of electromagnetic radiation phenomena for compact antennas and meet the requirements of tomorrowapos;s connected objects.
électromagnétisme, électronique, télécommunications
Talent impulse, the scientific and technical job board of CEA's Technology Research Division
© Copyright 2023 – CEA – TALENT IMPULSE - All rights reserved