Digital correction of the health status of an electrical network

Apply

Cable faults are generally detected when communication is interrupted, resulting in significant repair costs and downtime. Additionally, data integrity becomes a major concern due to the increased threats of attacks and intrusions on electrical networks, which can disrupt communication. Being able to distinguish between disruptions caused by the degradation of the physical layer of an electrical network and an ongoing attack on the energy network will help guide decision-making regarding corrective operations, particularly network reconfiguration and predictive maintenance, to ensure network resilience. This study proposes to investigate the relationship between incipient faults in cables and their impact on data integrity in the context of Power Line Communication (PLC). The work will be based on deploying instrumentation using electrical reflectometry, combining distributed sensors and AI algorithms for online diagnosis of incipient faults in electrical networks. In the presence of certain faults, advanced AI methods will be applied to correct the state of the health of the electrical network's physical layer, thereby ensuring its reliability.

docteur en réseaux de communication et traitement du signal

en_USEN

Contact us

We will reply as soon as possible...