This PhD will take place at the CEA–LETI, a major European actor in the semiconductor industry, and more precisely, at the Nanocharacterization platform of the CEA–LETI witch offer world-class analytical techniques and state-of-the-art instruments. Our team aims to accompany the industry in the development of new characterization tools and so to meet the metrological needs of future technological nodes. Over the past few years, pioneer developments on a new metrology technique based on hard x-ray scattering called CD-SAXS were done at the PFNC. This technique is used to reconstruct the in-plane and out-of-plane structure of nanostructured thin-films with a sub-nm resolution. In this project, we are looking to extend the CD-SAXS approach leveraging the recent breakthrough in the development of low-energy x-ray sources (A. Lhuillier et al. 1988, Nobel prize 2023) called High Harmonics Generation (HHG) sources. Therefore, you will participate in the development of a new and promising characterization methods called Low-energy critical dimension small angle x-ray scattering. The very first proof of concept of this new measurement was conducted in November 2023. Mission: In order to include in the data reduction the measurement specificities of this new approach (multi-wavelength, low energy, …) your mission will focus on several aspects to explore in parallel: - Develop new modeling tools to analyze the data: o Finite element simulations with Maxwell solver o Analytical Fourier Transform (similar to standard CD-SAXS) vs dynamical theory o Comparison between the two approaches - Build new models dedicated to lithography problematic (CD, overlay, roughness) - Define the limitations of the technique through the simulation (in term of resolution (nm), uncertainty) This work will support the development of CD-SAXS measurements with a laboratory HHG (High Harmonic Generation) source lead by a Postdoctoral fellow.
Master 2 en physique numérique / mathématique appliqué
Talent impulse, the scientific and technical job board of CEA's Technology Research Division
© Copyright 2023 – CEA – TALENT IMPULSE - All rights reserved