Fabrication of Metasurfaces by Self-Assembly of Block Copolymers

Apply

Block copolymers (BCP) are an industrial technology in full expansion, offering promising perspectives for material nanostructuring. These polymers, composed of chemically distinct block chains, self-assemble to form ordered structures at the nanometric scale. However, their current use is limited to specific nanostructuring per product (1 product = 1 nanostructuring), thus restricting their application potential. This PhD proposes to develop an innovative method to create multiple patterns in a single BCP self-assembly step using a mixture of two products. The student will also focus on controlling the localization of these patterns using chemoepitaxy, a technique combining chemical and morphological guidance to precisely control the position of patterns at the micrometric and nanometric scales. The work will proceed in several steps: understanding the mechanisms of mixed block copolymers, developing functionalized substrates for chemoepitaxy using advanced lithography techniques, and conducting BCP self-assembly experiments on these substrates. The resulting structures will be analyzed using the metrology equipment available at CEA-Leti. The targeted applications include the creation of nanostructures capable of interacting with light, reducing diffraction, and controlling polarization. The expected results include demonstrating the ability to generate multiple types of patterns in a single self-assembly step, with precise control over their position and dimensions.

BAC +5 nanotechnology, chemistry, or physics

Related media

en_USEN

Contact us

We will reply as soon as possible...