post-docs

All our offers

+Filter by technology challenge

  • Cyber security : hardware and sofware
  • Energy efficiency for smart buildings, electrical mobility and industrial processes
  • Solar energy for energy transition
  • Green & decarbonated energy including bioprocesses and waste recycling
  • Additive manufacturing, new routes for saving materials
  • Support functions
  • Advanced hydrogen and fuel-cells solutions for energy transition
  • Instrumentation nucléaire et métrologie des rayonnements ionisants
  • Artificial Intelligence & data intelligence
  • New computing paradigms, including quantum
  • Emerging materials and processes for nanotechnologies and microelectronics
  • Advanced nano characterization
  • Photonics, Imaging and displays
  • Communication networks, IOT, radiofrequencies and antennas
  • Smart Energy grids
  • Numerical simulation & modelling
  • Stockage d'énergie électrochimique y compris les batteries pour la transition énergétique
  • Cyber physical systems - sensors and actuators
  • Health and environment technologies, medical devices
  • Factory of the future incl. robotics and non destructive testing

+Filter by institute

  • CEA-LETI
  • CEA-LIST
  • CEA Tech en Région

+Filter by location

  • Grenoble
  • Saclay
Number of results : 4
  • Solar energy for energy transition Decentralized Solar Charging System for Sustainable Mobility in rural Africa

    A novel stand-alone solar charging station (SASCS) will be deployed of in Ethiopia. Seeing as 45% of Sub-Saharian Africa’s population lacks direct access to electricity grids and seeing as the the infrastructure necessary to reliably harness other energy sources is largely non-existent for many such populations in Ethiopia, introducing the SASCS among some of the...

    Learn more

  • Solar energy for energy transition High efficiency silicon cell irradiations for space

    Historically, photovoltaics was developed in conjunction with the growth of space exploration. During the 90's, III-V multi-junction solar cells were progressively replaced silicon, for their superior performance & radiation hardness. Today, the context is favorable to a revival of space Si: increasing PV power needs, missions with moderate durations & constraints (LEO), very low cost...

    Learn more

  • Solar energy for energy transition Development of irradiation resistant silicon materials and integration in photovoltaïcs cells for space applications

    Historically, photovoltaic (PV) energy was developed together with the rise of space exploration. In the 90’s, multijunction solar cells based on III-V materials progressively replaced silicon (Si) cells, taking advantage of higher efficiency levels and electrons/protons irradiation resistance. Nowadays, the space environment is again looking at Si based PV applications: request of higher PV power,...

    Learn more

  • Solar energy for energy transition Next generation PV module packaging design and mechanical testing

    Photovoltaic modules are required to last 25- 30 years in harsh outdoor environment. The packaging of PV modules plays an essential role in reaching this target. PV cells are protected by a glass frontsheet, and highly engineered polymeric encapsulants and backsheets. Encapsulants provide moisture, oxygen &UV barrier, electrical isolation and mechanical protection of highly fragile...

    Learn more

en_USEN

Contact us

We will reply as soon as possible...